学术讲座【Hearing pseudoconvexity in Lipschitz domains with holes via ? 】
发布时间: 2017-06-16 浏览次数: 70

时间:2017年6月20日(星期二)15:00 -16:00

地点:旗山校区理工北楼601报告厅

主讲:Rutgers University–Camden,Siqi Fu 教授 

主办:数学与计算机科学学院、福建省分析数学及应用重点实验室、数学研究中心

专家概况:Siqi Fu,Rutgers University–Camden教授,1984年获华南师范大学学士学位,1987年获北京大学硕士学位,1994年获Washington University博士学位。

报告摘要:In this talk, we explain how one can determine pseudoconvexity in Lipschitz domains with holes via spectral property of the -Neumann Laplacian. More precisely, let Ω = Ω/ D where Ωis a bounded domain with connected complement in Cn and D is relatively compact open subset of Ωwith connected complement in Ω. We obtain characterizations of pseudoconvexity of Ωand D through the vanishing or Hausdorff property of the Dolbeaultcohomology groups on various function spaces. In particular, we show that if the boundaries of Ωand D are Lipschitz and C2-smooth respectively, then both Ωand D arepseudoconvex if and only if 0 is not in the spectrum of the-Neumann Laplacian on (0,q)-forms for 1 ≤ q ≤ n2 when n ≥ 3; or 0 is not a limit point of the spectrum of the-Neumannn Laplacian on (0, 1)-forms when n = 2. This is a joint work with Christine Laurent-Thi ebaut and Mei-Chi Shaw.

 

 
XML 地图 | Sitemap 地图